
VxWorks 1553 Driver
Testing options
Tue, Jun 23, 1998

Test environment
A test station for exercising the new 1553 driver code running under the 

VxWorks operating system kernel is located in the lab area on level 3 in the D0 
assembly building. The Motorola 162 CPU board runs VxWorks and uses a 1553 
controller board to communicate with a D0 Rack Monitor Remote Terminal (RT). 
The 1553 hardware is identical to that used for the D0 slow controls for the past 10 
years. Connection to the VxWorks system for testing is done via telnet to Internet 
node d0sil004.fnal.gov. The development computer system that supports the files 
needed for VxWorks-based development is d0chb.fnal.gov.

Login to the test node via
telnet d0sil004.fnal.gov

The username is vxworks. 
The password is known to authorized users.

The test node may be rebooted by typing ctl-x. (This can be too easy to do!)

Preparation of the testing environment
Enter the following commands at the VxWorks telnet prompt:

cd “~goodwin”
ld <drv1553.o
ld <drv1553Command.o
moduleShow
sysIntEnable 5
drv1553Init
drv1553Define 0,0x28,10,0x200000,0x2000,0x1000

The various source and object files are kept in d0chb under the username goodwin. 
The drv1553.c file (whose corresponding object file is drv1553.o) contains most of the 
driver source code. The test routine drv1553Command is maintained in a separate 
source file. The two ld commands download the object files into the VxWorks 
system, which accomplishes the required linking automatically. The moduleShow 
command lists the modules now known to the system. Next the level 5 interrupt is 
enabled from the IRQ5 line on the VMEbus, which is selected on the controller board 
via a set of three switches. The 1553 driver package is initialized, and one instance 
of the driver is defined, that for controller #0, whose memory space is located in 24-
bit VMEbus standard address space at 0x200000, a base address also selected by 
switches on the controller board. Each controller occupies 64K bytes of memory 
space; however, some may be populated with only 16K bytes of memory chips. Each 
controller board actually includes two controllers. In this case, controller #1 uses 
64K bytes of memory space at address 0x210000.



The drv1553Define command establishes controller #0 as using interrupt vector 0x28, 
a limit of 10 entries in the message queue that is used to pass jobs to the driver, the 
base address of 0x200000, an offset of 0x2000 bytes to the start of the area of memory 
used for building the necessary 1553 command block structures necessary to carry 
out a job. The value 0x1000 specifies that 4K bytes of memory are available for this 
purpose. In summary, the area from 0x202000–0x202FFF will be used for building 
command blocks as needed.

Driver operation
With the installation of each controller, a task is intialized that awaits the 

request for jobs to be processed via a message queue. A separate message queue is 
used for each controller. When an entry is read from the message queue, the required 
number of 1553 command blocks are prepared in the controller’s memory, and the 
first command block is passed to the controller hardware to be executed. Upon 
completion, an interrupt routine checks for errors, then directs the hardware to 
execute the next command block. When the last command block is finished, the 
callback function is invoked, passing a kind of summary error status to the user. If a 
1553 error occurs during any command block execution, the rest of the command 
blocks are aborted, and the status is returned that includes the transfer index 
number that was active at the time the error occurred, along with the controller’s 
error status word. The driver then returns to await the next message queue entry.

Driver parameters, status responses
Inside the driver is the main entry point called drv1553Execute, which is 

invoked by the EPICS driver support layer to effect 1553 data transfers. It captures 
the arguments passed to it and writes them into the message queue selected by the 
controller number. The arguments are as follows:

controller number, range 0–5
ptr to array of transfer specs
number of transfer specs
ptr to callback function that the driver invokes upon transfer completion
long word argument to be passed to callback function

Each transfer spec array element consists of the following structure:
1553 command word (16 bits)
number of bytes to transfer (16 bits)
ptr to data buffer to send or receive (32 bits)

Note that the number of bytes specified in a single transfer may exceed 64 bytes, the 
1553 hardware limit of 32 words, in which case multiple command blocks will be 
built to support the complete transfer, each using the same command word.

The reason to permit multiple transfers in one call to drv1553Execute is that it may 
sometimes be necessary to insure that several commands are executed in sequence, 
without interruption, in order to accomplish some particular task. All transfers in 



one array specified in the call to drv1553Execute will be executed “atomically,” and 
only a single invocation of the callback routine will result. Note that the user should 
not alter the contents of data buffers passed via drv1553Execute until the callback 
function is invoked. Only at that time can it be assured that output buffers are no 
longer needed and input buffers contain the data acquired from the hardware.

At this time the only returned error status from the call to drv1553Execute is –1, 
where the value available via errno is 1, which means Invalid controller#. In this 
case, nothing will be wwritten into the mesage queue, and the callback function will 
not be invoked. Additional software checks are made later during driver processing 
of the requested transfers. Error codes resulting from those checks are returned via 
the callback function.

The user callback function has two arguments and returns void.
long word argument as passed via drv1553Execute call
long word status

The long word of status may indicate several possibilities:
00000000 No errors. Transfer was successful.
xfrIndex<<16 + errWord Transfer index# of err, controller error word.
–1<<16 + err Software error detected, where err specifies error.

The values for xfrIndex range from 0 to the number of transfers minus one. The 
errWord value is furnished by the controller hardware. A likely cause may be a lack of 
timely response from an addressed RT. (The 1553 specification requires an RT to 
commence responding within 14 microseconds from reception of a command.)

The values for err that can occur are the following:
1 Invalid controller#
2 Bad argument value
3 Odd #bytes specified. Even #bytes required with 1553.
4 Invalid #bytes. Mode code without data must specify 0 bytes.
5 Too many command blocks. Overflowed space for command blocks
6 n.u.
7 Timeout awaiting interrupt from controller
8 Error from message queue access via mq_receive
9 Invalid message queue entry type#

The error specification for the errWord value are part of the 1553 standard:
Bit Meaning
15–11 RT address (not used for controller)
10 n.u.
9 Improper sync
8 Address mismatch error
7 Improper word count



6 Response time error
5 Information field > 16 bits
4 n.u.
3 Invalid Manchester II
2 Parity error
1 n.u.
0 n.u.

Test vehicle for drv1553Execute
To assist in exercising the driver software, the routine drv1553Command is 

provided. It invokes the drv1553Execute entry point specifying a single transfer. Here 
are the arguments for drv1553Command:

controller number
RT address field
Subaddress field
First data word value
Number of data words

The RT address may specify any value from 0–31, where 31 is interpreted by the 
controller for broadcasting to all RT’s. (This feature has not yet been used.) For 
Subaddress values of 1–30, if the transfer command is output (sending data to the 
RT), then the number of data words is specified > 0, and the data buffer is filled with 
an increasing sequence of 16-bit values starting with the first data word value. If the 
transfer command is input (reading words from the RT), then the number of words is 
specified as < 0, and the data words will be displayed upon completion of the 
transfer.

For Subaddress values of 0 or 31, used to imply a “mode code” command, no more 
than a single data word is used. In this case, the number of words parameter is used 
to specify the mode code value, in the range 0–31. Use of the various mode code 
values are standardized. Some of them, with mode code values of 0–8, do not use a 
data word at all. Those that do, with mode code values of 16–21, imply either an 
input data word or an output data word, but not both. Here is a brief list of the 
standardized mode code values:

Mode code T/R bit Function Data? Broadcast?
0 1 Dynamic bus control N N
1 1 Synchronize N Y
2 1 Transmit status word N N
3 1 Initiate self test N Y
4 1 Transmitter shutdown N Y
5 1 Override transmitter shutdown N Y
6 1 Inhibit terminal flag bit N Y
7 1 Override inhibit terminal flag bit N Y
8 1 Reset remote terminal N Y
9–15 1 (reserved) N TBD



16 1 Transmit vector word Y N
17 0 Synchronize Y Y
18 1 Transmit last command Y N
19 1 Transmit BIT word Y N
20 0 Selected transmitter shutdown Y Y
21 0 Override selected transmitter shutdown Y Y
22–31 1/0 (reserved) Y TBD

D0 Rack Monitor
One example of an RT is that used throughout much of the D0 detector for 

slow controls data acquisition. It interfaces to 8 D/A channels, 4 words of digital I/O 
and 64 channels of A/D. Here is a brief summary of the subadress values used:

Subaddress T/R Description
1 0/1 D/A chan 0
2 0/1 D/A chan 1
3 0/1 D/A chan 2
4 0/1 D/A chan 3
5 0/1 D/A chan 4
6 0/1 D/A chan 5
7 0/1 D/A chan 6
8 0/1 D/A chan 7

9–15 x n.u.
16 0/1 Digital I/O (P3)
17 0/1 Digital I/O (P8)
18 0/1 Digital I/O (P2)
19 0/1 Digital I/O (P7)
20 1 A/D channels 0–63 (P5,P6,P10,P11)

21–29 x n.u.
30 1 Status/ID word
31 0 Synchronize mode code (17): initial A/D chan#

Each D/A channel may be read or written. Each digital I/O word may be read or 
written, as determined via switches on the front panel. The RT address is also set 
via such front panel switches. The labels Px identify I/O connectors on the rear panel.

Additional driver entry points
As part of the driver package, the VxWorks-required routines drv1553Init and 

drv1553Report are available. As shown before, drv1553Init must be invoked before 
any drivers are initialized via drv1553Define. The drv1553Report routine merely lists 
out the current set of initialized drivers, one for each controller.

Each 1553 controller driver is initialized via drv1553Define, with these arguments:
controller number
interrupt vector number (8-bit)
message queue size—maximum number of entries available



VMEbus controller memory base address
Offset to start of command block area
Size of command block area

Complementary to drv1553Define is the routine drv1553Undefine, which is used to 
remove a 1553 controller driver. It performs this task by writing a special type of 
message into the message queue that is interpreted by the driver code as a signal to 
terminate itself and release all its reserved resources. The single argument for 
drv1553Undefine is the controller number.

Evolving system
Of course, this test environment herein described is one that continues to 

undergo change. Nonetheless, this description should serve to acquaint a new user 
who is interested in exercising the VxWorks 1553 driver software package. See 
Robert Goodwin or Fritz Bartlett for additional information.


